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A powerful Ti-crossed Claisen condensation between ketene silyl acetals (KSAs) and acid chlorides was successfully performed to give
o-monoalkylated esters and thermodynamically unfavorable (less accessible) o,o-dialkylated f-keto esters in good yield (46 examples; 41 —
98% yield). A closely related reaction between ketene silyl thioacetals (KSTAs) and acid chlorides also proceeded smoothly to give
o-monoalkylated and  o,a-dialkylated f-keto thioesters (21 examples; 61 —97% yield). The present protocol was extended to the direct condensation

of KSAs with carboxylic acids (14 examples; 71 —97% yield).

The Claisen condensation is recognized as a fundament

and useful C-€ bond-forming reaction for obtainingketo Scheme 1. Traditional Claisen Condensation UsingMono-
esters in organic synthes€$his reaction is categorized into and a,o-Disubstituted Esters

two types: (i) traditional base-mediated condensations using . M o o
MOR (M = Na, K), LDA, MHMDS (M = Li, Na, K), and 1 M'Base 0.0 ;

MH (M = Na, K)? and (i) the Ti-Claisen condensatién. 2 R Ao s {Fﬂ "‘1 OR? R\)HR%%RZ
These methods, however, are limited to reactions of ! stable cnolate 2
a-monoalkylated ester substratésand cannot be applied o M Base o 0o

to reactions ofo,a-dialkylated ester$ because the retro- 2 RHAORa R OR®
Claisen condensation generally predominatesacks the R? retro Claisen condensation RZR! R2
ability to form stableS-keto ester metal enolates (Scheme 3 4
1).145

A recently reported NaOH-catalyzed crossed Claisen

(1) (a) For examples, see: Smith, M. B.; MarchAdlvanced Organic i i i
Chemistry, 5th ed.; John Wiley: New York, 2001; p 569. (b) Vollhardt, K. condensatlpn of ketene .Sllyl ac?tals (KSAs) with methyl
P. C.; Schore, N. EOrganic Chemistry, 3rd ed.; Freeman: New York, ester8 provides one solution to this iss@@wo drawbacks,

é?199; p 1038. f(C)dCIa’\)Iden,YJ.; Ergg\(ﬁs, N7 zvgar(rg?,KS_..; Wtﬁthegr,gﬁgc however, remain: (i) 3 equiv of KSAs (vs esters) is generally
emistry Oxford: ew YOrK, P . urtl, L.; Cza . . . .

Strategic Applications of Named Reactions in Organic SynthEtssvier: requwed to Complete the reaction "_ind (”) the Car_bonyl
Burlington, 2005; p 86 and p 138. acceptor (methyl esters) should be simple and reactive. As
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part of our ongoing project to develop practical Claisen || A

condensation$,® we present here an efficient powerful Ti-
crossed Claisen condensation of KS2es—f, derived from
both a-monoalkylated anda,o-dialkylated esters, with

Table 2. Claisen Condensation between KSBand Acid
Chlorides
OTMS

. . . . . o o0
carboxylic acid chlorides or their parent acids (Scheme 2). 1)01\ N RQ\%\OR‘; - chlorobenzene . .
R Cl B 0-5%1020-25%, N RERION
5af 1.5 equiv,
| (sequy o e 718
S(_:lhleme 2.I Ti-Crossed Claisen Co_?(:lien;ation Ulsing Ketene OTMS OTMS OTMS
Silyl Acetals (KSAs) and Ketene Silyl Thioacetals (KSTAs) Me\%\OMe Et\é/\OMe Et\{kOMe
0 0 OTMS ¢y, o 0 Me Me Ph
2 5
R1)J\CI <°r R1)J\OH> * R%XR“ R' xR - % ‘
R® R? R® oTMS OTMS OTMS
X =0 (KSA, 5a-f) Mew 261 py Ph“/\OMe nBuy ovte
X =8:(KSTA, 6a-e) 5d 5e 5f
Entry Acid chloride KSA Product  Yield/ %"
In addition, a closely related condensation between ketene— 5 5 7 %
silyl thioacetal acetals (KSTA$a—e and acid chlorides was 2 e~ b b 95
performed. The present method, giving a varietysefeto 3 5¢ 7e 61
esters and thioesters, proved to be the most powerful among 4 5d 7d 45
hitherto reported Claisen condensations. 2 o 7 j‘l‘
The initial attempt was guided by the reaction between ) -
. . 7 5a 8a 88
KSA 5a (1.5 equiv) of methyl 2-methylpropionate and deca- /\/))km
noyl chloride using several Lewis acid reagents $BEO, 8 - Sb 8b 2
AICl3, ZnBr,, SnC}, ZrCly, TiCly) (Table 1). Although a Bf 9 5a 9a 91
Cl
10 (j)k 5b 9b 91
. o 12 cl 5b 10b 85
Table 1. reening of Lewis Aci
able Screening of Lewis Acids 3 5 < iTa =
o OTMs  Lewis acid o o 14 %Cl sb 11b 75
> (1.0 equiv)
\ﬁjLCI ’ \(kOMe - WOMe 15 \/\/\/\/\i o 12a 5
Y
5a (1.5 equiv) 7a 16 cl 5b 12b 38
17 O 5a 13a 88
. . 18 C[/\/\/U\C[ 5b 13b 81
Entry Lewis acid Solvent Yield/%* o)
19 Me Sa 14a 71
1 BF3Et;0 CH,Cl, trace " WCI @ . .
2 AlCl; CH;Cly 61 Q s
3 ZnBrs CH:Cly 57 21 o Sa 15a 85
4 SnCl4 CHzClz 23 22 sb 15b 8’8
5 ZI‘Cl4 CHzClz 66 23 o) 5 16 35
6 TiCly CH;Cly 80 o o4 A
7 TiCly toluene 72 24 Sb 16b 98
8 TiCly chlorobenzene 85 25 0 5a 17a 89
: Cl
aDetermined by*H NMR. 2 Cl/@)‘\ . o .
27 % 5a 18a 95
. . Cl
Et,O-promoted Claisen-type condensation between KSAs 28 Meo/@ 5b 18b 96
and aryl-type acid chlorides was reporfatie corresponding 2 Isolated

reaction did not proceed (entry 1). Among five Lewis acids,

TiCl, produced the best result (entry 6). Chlorobenzene; CH
Cl, and toluene were used as solvents (entries 6—8).

chlorides. The salient features are as follows: (i) The

Table 2 lists the successful results of the present Ti-crossedreaction, using both aliphatic and aromatic acid chlorides,

Claisen condensation using a variety of K3#s-f and acid

proceeded smoothly to give the correspondirigeto esters

(2) (a) Fisher, N.; McElvain, S. MJ. Am. Chem. S0d.934,56, 1766.
(b) Yoshizawa, K.; Toyota, S.; Toda, Fetrahedron Lett2001,42, 7983.
(c) Cooke, M. P., JrJ. Org. Chem1993,58, 2910. (d) Loubinoux, B.;
Sinnes, J.-L.; O’'Sullivan, A. CJ. Chem. Soc., Perkin Trans.1995, 521.
(e) Lombart, H.-G.; Lubell, W. DJ. Org. Chem1994 59, 6147. (f) Austad,
B. C.; Hart, A. C.; Burke, S. DTetrahedron2002,58, 2011. (g) Brown,
C. A. Synthesid 975, 326. (h) McMurry, J. E.; Fleming, M. P.; Kees, K.
L.; Krepski, L. R.J. Org. Chem1978,43, 3255.
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(3) (a) Tanabe, YBull. Chem. Soc. Jprl989,62, 1917. (b) Crane, S.
N.; Corey, E. J.Org. Lett. 2001, 3, 1395. (c) Tanabe, Y.; Makita, A,;
Funakoshi, S.; Hamasaki, R.; KawakusuAHlv. Synth. Catal2002,344,
507. (d) Tanabe, Y.; Manta, N.; Nagase, R.; Misaki, T.; Nishii, Y.;
Sunagawa, M.; Sasaki, Adv. Synth. Catal2003 345, 967. (e) Hashimoto,
Y.; Konishi, H.; Kikuchi, S.Synlett2004, 1264. (f) Misaki, T.; Nagase, R.;
Matsumoto, K. Tanabe, YJ. Am. Chem. SoQ005, 127, 2854. Other
references cited therein.
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in good to excellent yield (28 examples;498%). (i) KSA

97%). Note that good yield was obtained using sterically

equivalents obawere significantly reduced to 1.5, compared congested and-monoalkylated KSTA$d and6e (entries
with the NaOH-catalyzed method, in which 3 equiv was 4,5, 7, 12, 15, and 19).

usec® (i) Terminal double bondg-chloro, and methyl ester
functionalities were tolerated (entries 180) (note that

Next, to solve the lower yield problems referred to above
in (iv) and (v) using KSAssc—f, N-methylimidazole was

methyl esters function as electrophiles in the NaOH-catalyzedemployed as a key cocatalyst because acid chlorides con-

method). (iv) Sterically congested KS# bearing ethyl and
phenyl groups ir,a-positions resulted in a moderate yield
(entry 3). (v)a-Monoalkylated KSA$Sd—f, however, gave
the products in low yield) (vide infra, Table 4).

The relevant reaction between KSTAas—e and acid chlor-

dense withN-methylimidazole to form an activated acylam-
monium electrophilic intermediat293"® As expected, the
yield was markedly improved using a combined reagent,
TiClJ/N-methylimidazole, giving the desirgéiketo esters
(Table 4). We speculate that TiCtoordinates with the

ides was investigated. Table 3 lists the successful results.

Table 3. Claisen Condensation between KST@a—eand
Acid Chlorides

OTMS
)(J)\ . R ot chlorobenzene . o0 .
+ T, ———————
R cl R, o soCt2-25%, R p3<gs SR
a-e i
(1.5 equiv) (1.5 equiv) 15h 19-28
OTMS OTMS OTMS
Me%sph Me\%\S(OctyI) MeZ 5 (e-Hexyl)
Me g4 Me gp Me 6c
£ /OTMS OTMS
E)\S(Octyl) =T
Ph g4 6e
Entry Acid chloride KSTA  Product Yield/ %"
1 /\/\/\/\)OL 6a 19a 97
2 cl 6b 19b 97
3 6c¢ 19¢ 92
4 6d 19d 86
5 6e 19¢ 64"
6 f 6a 20a 91
Cl
7 (j)k 6d 20d 87
8 0 6a 21a 82
9 >Hk01 6b 21b 94
o
10 s~ 6a 22a 87
11 O 6b 23b 94
12 I 6e 23e 61°
o)
13 MO A~A~A~AG 6 24a 85
0
o
14 6b 25b 95
cl .
15 6e 25e 65
16 o 6a 26a 93
17 o 6b 26b 95
18 6¢ 26¢ 94
19 6d 26d 70
)
20 /©)k01 6a 27a 92
cl
o)
21 J@)\n 6a 28a 95
MeC

alsolated.P 0—5 °C.

Similar to the case using KSAs, a variety®keto thioesters
were obtained in good to excellent yield (21 examples; 61
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Table 4. Ti-Crossed Claisen Condensation between Less
Reactive KSAs5c—f and Acid Chlorides

o _TiCl
0 ~ T Ticy | cr
1)J\ + N_ NMe | gt N“FNMe R OND
R Cl \—f ¥ ” "+ NMe
(1.0 equiv) 29 30
OTMS
R~ 4
OR
23 5c-f o 0
R R*
0-5°C,1.5h R? R3O
\é%\OMe MeZSoipr Ph%OMe n_BuH/\OMe
Ph s5¢ 5d e 5f
E;” Acid chloride KSA  Product  Yield/ %"
1 5¢ 7¢ 95 (93)°
2 o 5d 7d 70
3 /\/\/v\/% Se 7e 817
4 Sf 7f 86
5 o Sc¢ 12¢ 90°
6 \/\/\/\/\)\m 5d 12d 64
7 s5f 12f 86
8 o 5¢ 13¢ 96
9 A~ 5d 13d 69
10 C C 5e 13e 9
11 o] 5¢ 14c¢ 85°¢
12 MeOMCI 5d 14d 80
13 0 Se 14e 78¢
14 it 5¢ 15¢ 91°
Cl
15 5f 15f 88
o}
16 @Am 5¢ 16¢ 81°
O
17 /@*a 5c 17¢ 67¢
Cl
o]
18 Q)Lm Sc 18¢ 65°
MeQ

alsolated.? Use of DMAP instead ofN-methylimidazole® 20—25°C.
d—40 to—45°C.

carbonyl oxygen oR9 to afford a highly reactive, double-
activated acylammonium intermedig&88. Terminal double
bond, Cl atom, and methyl ester functional groups were also
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tolerated during this reaction (entries 53). Greenwald and Screening of sulfonyl chlorides revealed that 2,5-dichlo-
co-workers reported a relevant mechanism during an efficientrobenzenesulfonyl chloride gave the best result (entry 7).
esterification of tertiary alcohols utilizing a double-activated Note that DMAP (82%) produced somewhat better results
acylammonium intermediate, derived from a Sc(QTf) thanN-methylimidazole (73%) under conditions identical to
DMAP reagenf. those of entry 7.

The three methods presented here have a higher reactivity On the basis of this result, Ti-crossed Claisen condensa-
than the related NaOH-catalyzed method between KSAs andtions between KSASa—c and several carboxylic acids were

methyl ester. Indeed, the reactions ushogf in the NaOH-
catalyzed method did not proceed (low yield).

successfully performed to give the desifgdeto esters in
good to excellent yield (Table 6) (14 examples—RI'%

Finally, the present protocol was extended to Ti-crossed yield).
Claisen condensation using parent carboxylic acids as the

electrophile. We expected the formation of double-activated ||| NG

acylammonium intermedia&3, which was coordinated with
TiCl, (Table 5). A plausible mechanism is as follows: Mixed

Table 6. Ti-Crossed Claisen Condensation between KSAs and
Carboxylic Acids

Cl

cl
| 2 BN |9 DMAR
. . _ SO SO .
Table 5. Screening of Sulfonyl Chlorides for the Reaction of ~ R "OH * z RI7N0772 TiCl
Carboxylic Acids c cl
, Qs
O Et3N O DMAP Q Cl - O\\\\\TiCk al- R OMe 5a- C
8 8 8 = N RYN =N < SoMe
31 32 0-5°C1020-25°C, 15h R° R
OTMS
~TiC Me.~ (1.5 equiv)
row O “cl I ove M Entry Acid KSA  Product Yield/ %"
N/ e
\ﬁ/LNC‘) =N 8 OMe 1 o 5a 7a 81
8 0-5°Ct020-25°C, 15h 7a 2 e~ 5b 7b 87
33 3 OH 5¢ e 97
Entry Sulfonyl chloride Yield / %’ 4 O Sa 12a 73
5 NP 5b 12b 80
1 Me;NSO,ClI 12 p OH s 12 90
2 OCNSO.CI 20 ¢ <
65(57) 7 o Sa 13a 73
3 SO,Cl 8
— H—so, o ~~Hoy 5h 13b 77
9 5¢ 13¢ 88
4 u{ }sozm 41 o 5 > T %
Cl 11 WOH 5b 15b 90
5 Cl S0,CI 76 12 5¢ 15¢ 91
13 Q o Sa 34a 69
cl
14 Ho? ™~ om 5b 34b 71
6 OQNQSOQCI trace 7
Cl a|solated.
7 Gsezm 82 (73)

Cl

apetermined by!H NMR.? Parentheses indicate the cases using
N-methylimidazole instead of DMAP.

anhydride31 is initially formed in situ between decanoic
acid and a sulfonyl chloride in the presence ofN\Eas an
acid scavenger. Similar to the reaction shown in Tabl&l4,
is transformed to reactive intermedi&&8 through acylam-
monium 32 with DMAP.

(4) ZrCl-mediated condensation of aryl,o-dialkylated esters was
reported; however, it was limited to self-Claisen condensation. Tanabe, Y.;
Hamasaki, R.; Funakoshi, &hem. Commur2001, 1674.

(5) lida, A.; Takai, K.; Okabayashi, T.; Misaki, T.; Tanabe, Ghem.
Commun2005, 3171.

(6) Recently, a catalytic enantioselective version was disclosed. Mer-
menrian, A. H.; Fu, G. CJ. Am. Chem. SoQ005,127, 5804.

(7) Stefaniak, M. HSynlett1997, 677.

(8) Wakasugi, K.; lida, A.; Misaki, T.; Nishii, Y.; Tanabe, ¥dv. Synth.
Catal. 2003,345, 1209.

(9) Zhao, H.; Pendri, A.; Greenwald, R. B.0Org. Chem1998 63, 7559.
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In conclusion, we developed a Ti-crossed Claisen con-
densation between a number of KSAs (or KSTAs) of
o-monoalkylated esters and less accessityedialkylated
esters and acid chlorides (or acids) (81 examples total). The
present method exhibited high reactivity and generality,
which will provide a new avenue for the Claisen condensa-
tion.
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